Colloidal CuO nanoparticles can exhibit both photocatalytic activity under visible light illumination and resonant Mie scattering, but, for their practical application, they have to be immobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures, constitute a promising substrate for the immobilization of nanoparticles and for the tuning of their optical properties. The native wax layer covering the wing scales of butterflies was removed by simple ethanol pretreatment prior to the deposition of CuO nanoparticles, which allowed reproducible deposition on the dorsal blue wing scale nanoarchitectures via drop casting.
View Article and Find Full Text PDFBeside the more than two thousand normal specimens of Polyommatus icarus (Rottemburg, 1775) yielded by rearing experiments, there was one perfectly bilateral dichromatic individual first considered to be gynandrous. On the basis of analysing genitalia traits, wing surface covering scale micromorphology, and the spectral characteristics of the blue colour generated by the cover scales, the gender of the specimen has been identified as female. This exemplar was investigated in comparison with gynandrous specimens from the collections of the Hungarian Natural History Museum exhibiting various degrees of intermixing of blue and brown coloration.
View Article and Find Full Text PDFThe colour of the butterfly wing serves as an important sexual and species-specific signal. Some species produce structural colouration by developing wing scales with photonic nanoarchitectures. These nanostructures are highly conservative, allowing only a ±10 nm peak wavelength deviation in the reflectance spectra of the blue structural colour in natural Common Blue () populations.
View Article and Find Full Text PDFPhotonic nanoarchitectures of butterfly wings can serve as biotemplates to prepare semiconductor thin films of ZnO by atomic layer deposition. The resulting biotemplated ZnO nanoarchitecture preserves the structural and optical properties of the natural system, while it will also have the features of the functional material. The ZnO-coated wings can be used directly in heterogeneous photocatalysis to decompose pollutants dissolved in water upon visible light illumination.
View Article and Find Full Text PDFThe iridescent structural colours of butterflies, generated by photonic nanoarchitectures, often function as species-specific sexual signals; therefore, they are reproduced precisely from generation to generation. The wing scales of oakblue hairstreak butterflies (genus , Theclinae, Lycaenidae, Lepidoptera) contain multi-layer photonic nanoarchitectures, which can generate a wide range of structural colours, from violet to green. By scanning (SEM) and cross-sectional transmission electron microscopy (TEM) investigation, the colour tuning mechanism of the cover scales was explored.
View Article and Find Full Text PDF