Publications by authors named "G Pistolis"

Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp)-H bond activation/C-C coupling on the BODIPY backbone.

View Article and Find Full Text PDF

Blue organic light-emitting diodes require high triplet interlayer materials, which induce large energetic barriers at the interfaces resulting in high device voltages and reduced efficiencies. Here, we alleviate this issue by designing a low triplet energy hole transporting interlayer with high mobility, combined with an interface exciplex that confines excitons at the emissive layer/electron transporting material interface. As a result, blue thermally activated delay fluorescent organic light-emitting diodes with a below-bandgap turn-on voltage of 2.

View Article and Find Full Text PDF

Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor-acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a method to improve energy level alignment and electron injection in organic light emitting diodes (OLEDs) using functionalized zinc porphyrin compounds as interlayers.
  • The researchers focus on different configurations, molecular dipole moments, and terminal groups of the porphyrins to analyze their impact on optical properties and energy levels through various spectroscopy and measurements.
  • The results show that incorporating these functionalized porphyrin interlayers enhances OLED performance significantly, achieving luminance levels an order of magnitude greater than standard devices without these modifications.
View Article and Find Full Text PDF

A comparative study of the photophysical properties of octupolar pyridyl-terminated triphenylamine molecule, with its quadrupolar and dipolar analogues, by means of ambient and low temperature steady state spectroscopy and femtosecond to nanosecond time-resolved fluorescence spectroscopy is reported. The push-pull molecules bear triphenylamine electron donating core, pyridine peripheral electron acceptors, and acetylene π-bridge. The samples were studied in solvents of varying polarity and also upon addition of small amounts of acetic acid to induce protonation of the pyridine group.

View Article and Find Full Text PDF