Publications by authors named "G Pinon-Lataillade"

The human KIN17 protein is an essential nuclear protein conserved from yeast to human and expressed ubiquitously in mammals. Suppression of Rts2, the yeast equivalent of gene KIN17, renders the cells unviable, and silencing the human KIN17 gene slows cell growth dramatically. Moreover, the human gene KIN17 is up-regulated following exposure to ionizing radiations and UV light, depending on the integrity of the human global genome repair machinery.

View Article and Find Full Text PDF

Genotoxic agents deform DNA structure thus eliciting a complex genetic response allowing recovery and cell survival. The Kin17 gene is up-regulated during this response. This gene encodes a conserved nuclear protein that shares a DNA-binding domain with the bacterial RecA protein.

View Article and Find Full Text PDF

UV light provokes DNA lesions that interfere with replication and transcription. These lesions may compromise cell viability and usually are removed by nucleotide excision repair (NER). In humans, inactivation of NER is associated with three rare autosomal recessive inherited disorders: xeroderma pigmentosum (XP), Cockayne syndrome, and trichothiodystrophy.

View Article and Find Full Text PDF

Ionizing radiation elicits a genetic response in human cells that allows cell survival. The human KIN (also known as KIN17) gene encodes a 45-kDa nuclear DNA-binding protein that participates in the response to UVC radiation and is immunologically related to the bacterial RecA protein. We report for the first time that ionizing radiation and bleomycin, a radiomimetic drug, which produce single- and double-strand breaks, increased expression of KIN in human cells established from tumors, including MeWo melanoma, MCF7 breast adenocarcinoma, and ATM+ GM3657 lymphoblast cells.

View Article and Find Full Text PDF

While germ cell regulation of Sertoli cells has been extensively explored in adult rats in vivo, in contrast, very little is known about germ cell influence on Sertoli cell function at the time when spermatogenesis begins and develops. In the present study various Sertoli cell parameters (number, testicular androgen binding protein (ABP) and testin, serum inhibin-B and, indirectly, follicle-stimulating hormone (FSH)) were investigated after the exposure of 19-day-old rats to a low dose of 3 Grays of gamma-rays. Differentiated spermatogonia were the primary testicular targets of the gamma-rays, which resulted in progressive maturation depletion, sequentially and reversibly affecting all germ cell classes.

View Article and Find Full Text PDF