Publications by authors named "G Pettinari"

Unlabelled: A quantum-light source that delivers photons with a high brightness and a high degree of entanglement is fundamental for the development of efficient entanglement-based quantum-key distribution systems. Among all possible candidates, epitaxial quantum dots are currently emerging as one of the brightest sources of highly entangled photons. However, the optimization of both brightness and entanglement currently requires different technologies that are difficult to combine in a scalable manner.

View Article and Find Full Text PDF

The irradiation of InN and InGaN samples with low-energy H ions results in exceptionally high hydrogen uptake in a crystalline semiconductor. This phenomenon is attributed to specific In-H complex formation. By exploiting spectral fingerprints of the In-H complexes observable in In L3-edge X-ray absorption spectroscopy, we provide direct evidence of complex formation.

View Article and Find Full Text PDF

Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g.

View Article and Find Full Text PDF

We implemented radio frequency-assisted electrostatic force microscopy (RF-EFM) to investigate the electric field response of biaxially strained molybdenum disulfide (MoS) monolayers (MLs) in the form of mesoscopic bubbles, produced via hydrogen (H)-ion irradiation of the bulk crystal. MoS ML, a semiconducting transition metal dichalcogenide, has recently attracted significant attention due to its promising optoelectronic properties, further tunable by strain. Here, we take advantage of the RF excitation to distinguish the intrinsic quantum capacitance of the strained ML from that due to atomic scale defects, presumably sulfur vacancies or H-passivated sulfur vacancies.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria represents a growing threat to public health, and it calls for the development of alternative antibacterial approaches not based on antibiotics. Here, we propose vertically aligned carbon nanotubes (VA-CNTs), with a properly designed nanomorphology, as effective platforms to kill bacteria. We show, via a combination of microscopic and spectroscopic techniques, the ability to tailor the topography of VA-CNTs, in a controlled and time-efficient manner, by means of plasma etching processes.

View Article and Find Full Text PDF