To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants.
View Article and Find Full Text PDFThe understanding of how proteins evolve to perform novel functions has long been sought by biologists. In this regard, two homologous bacterial enzymes, PafA and Dop, pose an insightful case study, as both rely on similar mechanistic properties, yet catalyze different reactions. PafA conjugates a small protein tag to target proteins, whereas Dop removes the tag by hydrolysis.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) are prokaryotes that sense the geomagnetic field lines to geolocate and navigate in aquatic sediments. They are polyphyletically distributed in several bacterial divisions but are mainly represented in the Proteobacteria. In this phylum, magnetotactic Deltaproteobacteria represent the most ancestral class of MTB.
View Article and Find Full Text PDFUnder the same selection pressures, two genetically divergent populations may evolve in parallel toward the same adaptive solutions. Here, we hypothesized that magnetotaxis (i.e.
View Article and Find Full Text PDF