Publications by authors named "G Pennacchioni"

The energy released during an earthquake is mostly dissipated in the fault zone and subordinately as radiated seismic waves. The on-fault energy budget is partitioned into frictional heat, generation of new grain surface by microfracturing, and crystal-lattice distortion associated with dislocation defects. The relative contribution of these components is debated and difficult to assess, but this energy partitioning strongly influences earthquake mechanics.

View Article and Find Full Text PDF

Rocks of the Earth's crust and mantle commonly consist of different minerals with contrasting mechanical properties. During progressive, high-temperature (ductile) deformation, these rocks develop extrinsic mechanical anisotropy linked to strain partitioning between different minerals, amount of accumulated strain, and bulk strain geometry. Extrinsic anisotropy plays an important role in a wide range of geodynamic processes up to the scale of mantle convection.

View Article and Find Full Text PDF

How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate.

View Article and Find Full Text PDF

This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25-40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage.

View Article and Find Full Text PDF

Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature.

View Article and Find Full Text PDF