To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.
View Article and Find Full Text PDFThis exploratory study was designed to identify factors implicating microbial influence on medicinal plant metabolomes. Utilizing a whole-microbiome approach, amplicon sequencing was used to identify the makeup of fungal and bacterial assemblages from endophytic (interior) and epiphytic (external) environments in two different sets of congeneric host-plant pairs, with collection of multiple samples of two medicinal plant species () and two generic analogs (). Diversity analysis of microbial assemblages revealed the influence of three primary factors driving variance in microbial community composition: host-plant taxonomy, the compartmentalization of microbial communities within discrete plant parts, and the scale of distance (microhabitat heterogeneity) between sampling locations.
View Article and Find Full Text PDFObjective: Investigate the bioactivity and stability of Rhodiola rosea (RR) fractions as a natural source of prodelphinidin gallate (PDg) on dentin collagen via analysis of the viscoelastic and resin-dentin adhesive properties of the dentin matrix.
Methods: The biomimicry and stability of RR subfractions (F1, F2, F3 and F4) with collagen were determined by dynamic mechanical analysis (DMA). DMA used a strain sweep method to assess the dentin matrix viscoelastic properties [storage (E'), loss (E"), and complex (E*) moduli and tan δ] after treatment, 7-, 30- and 90-days of storage in simulated body fluids (SBF).