This study focuses on the chemical composition of cloud water (CW) and rainwater (RW) collected at Sinhagad, a high-altitude station (1450 m AMSL) located in the western region of India. The samples were collected during the monsoon over two years (2016-2017). The chemical analysis suggests that the concentration of total ionic constituents was three times higher in CW than in RW, except for NH (1.
View Article and Find Full Text PDFAerosol-CCN characteristics and dynamics during a pre-monsoon dust storm (April 6-11, 2015) over a high-altitude site ((17.92°N, 73.66°E, and 1348 m above mean sea level (MSL)) in Western Ghats, India, has been studied using ground-based observations, satellite, and reanalysis datasets.
View Article and Find Full Text PDFThe elevated aerosol layer (EAL) plays a vital role in weather and climate by modifying the Earth's radiation budget. In the present study, the EAL occurrence and its characteristics in the pre-monsoon season using micropulse lidar (MPL) observations during 2016-2018 and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) during 2007-2018 over Kattankulathur is being reported. We have collected 147 days (101 cases) of MPL (CALIPSO) observations during clear sky conditions in the pre-monsoon 2016-2018 (2007-2018), out of which EAL is observed for 56 days (61 cases).
View Article and Find Full Text PDFSecond-generation bioenergy, a carbon neutral or negative renewable resource, is crucial to achieving India's net-zero emission targets. Crop residues are being targeted as a bioenergy resource as they are otherwise burned on-field, leading to significant pollutant emissions. But estimating their bioenergy potential is problematic because of broad assumptions about their surplus fractions.
View Article and Find Full Text PDFHygroscopicity of atmospheric aerosol primarily depends on the size and chemical composition of the particle and is important for estimating anthropogenic aerosol radiative forcing. There is limited information exists over the Indian region on size segregated aerosol hygroscopicity (κ) in different seasons. This study presents 'κ' as derived from a Humidified Tandem Differential Mobility Analyzer (HTDMA) over a High Altitude Cloud Physics Laboratory (HACPL) in the Western Ghats, India for more than a year (from May 2019 to May 2020).
View Article and Find Full Text PDF