Publications by authors named "G Paillotin"

Light-gradient photovoltage measurements were performed on EDTA-treated thylakoids and on osmotically swollen thylakoids (blebs), both of spherical symmetry but of different sizes. In the case of EDTA vesicles, a negative polarity (due to the normal light gradient) was observed in the blue range of the absorption spectrum, and a positive polarity, corresponding to an inverse light gradient, was observed at lambda = 530 and lambda = 682 nm. The sign of the photovoltage polarity measured in large blebs (swollen thylakoids) is the same as that obtained for whole chloroplasts, although differences in the amplitudes are observed.

View Article and Find Full Text PDF

The light-gradient photovoltage from photosynthetic organisms and organelles is thought to arise from the primary charge separation in the reaction centers. The current explanation of the effect is the stronger excitation of the membrane side of a vesicle facing the light source than the one on the opposite side. Together with the known orientation of reaction centers, this explanation predicts unequivocally the polarity of the photovoltage.

View Article and Find Full Text PDF

The muscarinic receptor was studied in vivo in the human heart by a noninvasive method, positron emission tomography (PET). The study showed that the binding sites of 11C-labeled methiodide quinuclidinyl benzilate [( 11C]-MQNB), a muscarinic antagonist, were mainly distributed in the ventricular septum (98 pmol/cm3 of heart) and in the left ventricular wall (89 pmol/cm3), while the atria were not visualized. A few minutes after a bolus intravenous injection, the concentration of [11C]MQNB in blood fell to a negligible level (less than 100th of the concentration measured in the ventricular septum).

View Article and Find Full Text PDF

Positron Emission Tomography (PET) was used to analyse in vivo antagonist binding to human myocardial muscarinic cholinergic receptor. The methiodide salt of the muscarinic antagonist, quinuclidinyl benzilate (MQNB), was labeled with the positron emitter, Carbon-11, and injected intravenously to 8 normal subjects. 11C-MQNB concentration was determined in vivo in the ventricular septum from 40 cross-sectional images acquired at the same transverse level over a period of 70 minutes.

View Article and Find Full Text PDF

A master equation theory is formulated to describe the dependence of the fluorescence yield (phi) in photosynthetic systems on the number of photons (Y) absorbed per photosynthetic unit (or domain). This theory is applied to the calculation of the dependence of the fluorescence yield on Y in (a) fluorescence induction, and (b) singlet exciton-triplet excited-state quenching experiments. In both cases, the fluorescence yield depends on the number of previously absorbed photons per domain, and thus evolves in a nonlinear manner with increasing Y.

View Article and Find Full Text PDF