Optical heating of resonant nanostructures is one of the key issues in modern nanophotonics, being either harmful or desirable effect depending on the applications. Despite a linear regime of light-to-heat conversion being well-studied both for metal and semiconductor resonant systems is generalized as a critical coupling condition, the clear strategy to optimize optical heating upon high-intensity light irradiation is still missing. This work proposes a simple analytical model for such a problem, taking into account material properties changes caused by the heating.
View Article and Find Full Text PDFAll-dielectric nanophotonics offers a wide range of possibilities for thermally induced light manipulation at the nanoscale. High quality resonances allow for efficient light-to-heat conversion supported by various temperature detection approaches based on thermally sensitive intrinsic optical responses. In this work, we study theoretically a phenomenon of the photothermal reshaping of the radiation pattern of second-harmonic generation (SHG) that occurs in resonant all-dielectric systems.
View Article and Find Full Text PDFReconfigurable metasurfaces have recently gained a lot of attention in applications such as adaptive meta-lenses, hyperspectral imaging and optical modulation. This kind of metastructure can be obtained by an external control signal, enabling us to dynamically manipulate the electromagnetic radiation. Here, we theoretically propose an AlGaAs device to control the second harmonic generation (SHG) emission at nanoscale upon optimized optical heating.
View Article and Find Full Text PDFIn this article, we present the pick-and-place technique for the manipulation of single nanoparticles on non-conductive substrates using a tungsten tip irradiated by a focused electron beam from a scanning electron microscope. The developed technique allowed us to perform the precise transfer of single BaTiO nanoparticles from one substrate to another in order to carry out measurements of elastic light scattering as well as second harmonic generation. Also, we demonstrate a fabricated structure made by finely tuning the position of a BaTiO nanoparticle on top of a dielectric nanowaveguide deposited on a glass substrate.
View Article and Find Full Text PDFResonant dielectric structures have emerged recently as a new platform for subwavelength nonplasmonic photonics. It was suggested and demonstrated that magnetic and electric Mie resonances can enhance substantially many effects at the nanoscale including spontaneous Raman scattering. Here, we demonstrate stimulated Raman scattering (SRS) for isolated crystalline silicon (c-Si) nanoparticles and observe experimentally a transition from spontaneous to stimulated scattering manifested in a nonlinear growth of the signal intensity above a certain pump threshold.
View Article and Find Full Text PDF