In multiple stellar systems, interactions among the companion stars and their discs affect planet formation. In the circumstellar case, tidal truncation makes protoplanetary discs smaller, fainter and less long-lived than those evolving in isolation, thereby reducing the amount of material (gas and dust) available to assemble planetary embryos. On the contrary, in the circumbinary case the reduced accretion can increase the disc lifetime, with beneficial effects on planet formation.
View Article and Find Full Text PDFWe investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm.
View Article and Find Full Text PDF