Publications by authors named "G P Obedencio"

Izencitinib (TD-1473), an oral, gut-selective pan-Janus kinase (JAK) inhibitor under investigation for treatment of inflammatory bowel diseases, was designed for optimal efficacy in the gastrointestinal tract while minimizing systemic exposures and JAK-related safety findings. The nonclinical safety of izencitinib was evaluated in rat and dog repeat-dose and rat and rabbit reproductive and developmental toxicity studies. Systemic exposures were compared with JAK inhibitory potency to determine effects at or above pharmacologic plasma concentrations (≥1× plasma average plasma concentration [Cave]:JAK 50% inhibitory concentration [IC50] ratio).

View Article and Find Full Text PDF

The effects of opioids in the central nervous system (CNS) provide significant benefit in the treatment of pain but can also lead to physical dependence and addiction, which has contributed to a growing opioid epidemic in the United States. Gastrointestinal dysfunction is an additional serious consequence of opioid use, and this can be treated with a localized drug distribution of a non-CNS penetrant, peripherally restricted opioid receptor antagonist. Herein, we describe the application of Theravance's multivalent approach to drug discovery coupled with a physicochemical property design strategy by which the -substituted--3-(8-aza-bicyclo[3.

View Article and Find Full Text PDF

Gastrointestinal dysfunction as a consequence of the use of opioid analgesics is of significant clinical concern. First generation drugs to treat these opioid-induced side-effects were limited by their negative impact on opioid receptor agonist-induced analgesia. Second generation therapies target a localized, peripherally-restricted, non-CNS penetrant drug distribution of opioid receptor antagonists.

View Article and Find Full Text PDF

Background: Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters.

Methods: We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor.

Results: TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters.

View Article and Find Full Text PDF

Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy.

View Article and Find Full Text PDF