Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation.
View Article and Find Full Text PDFBiogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.
View Article and Find Full Text PDFThe Nem1-Spo7 phosphatase complex plays a key role in lipid metabolism as an activator of Pah1 phosphatidate phosphatase, which produces diacylglycerol for the synthesis of triacylglycerol and membrane phospholipids. For dephosphorylation of Pah1, the Nem1 catalytic subunit requires Spo7 for the recruitment of the protein substrate and interacts with the regulatory subunit through its conserved region (residues 251-446). In this work, we found that the Nem1 C-terminal region (CTR) (residues 414-436), which flanks the haloacid dehalogenase-like catalytic domain (residues 251-413), contains the conserved hydrophobic residues (L414, L415, L417, L418, L421, V430, L434, and L436) that are necessary for the complex formation with Spo7.
View Article and Find Full Text PDF