Bioactive films composed of Spiro-OMeTAD, a conductive molecular material (CMM), in combination with collagen have been manufactured and characterised for the first time. In-vitro cellular testing demonstrated the non-cytotoxicity of the doped Spiro-OMeTAD /Collagen films, opening the way for implantable or wearable medical devices and biosensors based on molecular materials.
View Article and Find Full Text PDFThe honey bee Apis mellifera has long been recognized as an ideal bioindicator for environmental pollution. These insects are exposed to pollutants during their foraging activities, making them effective samplers of environmental contaminants, including heavy metals, pesticides, radionuclides, and volatile organic compounds. Recently, it has been demonstrated that honey bees can be a valuable tool for monitoring and studying airborne PM pollution, a complex mixture of particles suspended in the air, known to have detrimental effects on human health.
View Article and Find Full Text PDFThe "asbestos problem" arises from the fact that asbestos is still abundant in many buildings and represents a hazard for human health. Current strategies adopted by law aiming at mitigating this hazard are far from being ideal. A smarter solution would be an energy sustainable detoxification treatment followed by recycling.
View Article and Find Full Text PDFAdhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation.
View Article and Find Full Text PDFAvailable quantification methods for energy dispersive X-ray microanalysis in transmission electron microscopy, such as the standardless method (SLM), the Cliff-Lorimer approximation (CLA) and the absorption correction method (ACM), are compared. As expected, the CLA and ACM give superior results with respect to the SLM. As far as absorption can be considered negligible, CLA and ACM perform similarly.
View Article and Find Full Text PDF