Sacrificial anodes composed of inexpensive metals such as Zn, Fe, and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines the development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate.
View Article and Find Full Text PDF,,','-Tetramethylchloroformamidinium hexafluorophosphate (TCFH) and -methylimidazole (NMI) enable the facile and practical reaction of carboxylic acids with amines, alcohols, and thiols to form amides, esters, and thioesters. To develop a mild synthesis of ketones with TCFH-NMI directly from carboxylic acids at room temperature, the Mayr nucleophilicity scale was used to compare the values of competent nucleophiles to potential carbon-centered nucleophiles, identifying pyrroles and indoles as successful substrates when ≥ 10.
View Article and Find Full Text PDFBackground: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3).
View Article and Find Full Text PDFOver the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures.
View Article and Find Full Text PDF