Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity.
View Article and Find Full Text PDFThe recent characterization of functional brown adipose tissue in adult humans has opened new perspectives for regulation of energy expenditure with respect to obesity and diabetes. Furthermore, dietary recommendations have taken into account the insufficient dietary intake of ω3 PUFAs and the concomitant excessive intake of ω6 PUFA associated with the occurrence of overweight/obesity. We aimed to study whether ω3 PUFAs could play a role in the recruitment and function of energy-dissipating brown/brite adipocytes.
View Article and Find Full Text PDFOxylipins are bioactive metabolites derived from the oxygenation of ω3 and ω6 polyunsaturated fatty acids, triggered essentially by cyclooxygenase and lipoxygenase activities. Oxylipins are involved in the development and function of adipose tissue and their productions are strictly related to diet quality and quantity. Oxylipins signal via cell surface membrane (G Protein-coupled receptors) and nuclear receptors (peroxisome proliferator-activated receptors), two pathways playing a pivotal role in adipocyte biology.
View Article and Find Full Text PDFBrite adipocytes recently discovered in humans are of considerable importance in energy expenditure by converting energy excess into heat. This property could be useful in the treatment of obesity, and nutritional aspects are relevant to this important issue. Using hMADS cells as a human cell model which undergoes a white to a brite adipocyte conversion, we had shown previously that arachidonic acid, the major metabolite of the essential nutrient Ω6-linoleic acid, plays a major role in this process.
View Article and Find Full Text PDFObjective: Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases.
Methods/results: Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α.