Publications by authors named "G Ozorowski"

HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood.

View Article and Find Full Text PDF

During infection, the fusion peptide (FP) of HIV envelope glycoprotein (Env) serves a central role in viral fusion with the host cell. As such, the FP is highly conserved and therefore an attractive epitope for vaccine design. Here, we describe a vaccination study in non-human primates (NHPs) where glycan deletions were made on soluble HIV Env to increase FP epitope exposure.

View Article and Find Full Text PDF

Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants.

View Article and Find Full Text PDF

An effective human immunodeficiency virus 1 (HIV-1) vaccine will most likely have to elicit broadly neutralizing antibodies (bNAbs) to overcome the sequence diversity of the envelope glycoprotein (Env). So far, stabilized versions of Env, such as SOSIP trimers, have been able to induce neutralizing antibody (NAb) responses, but those responses are mainly strain-specific. Here we attempted to broaden NAb responses by using a multivalent vaccine and applying a number of design improvements.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on generating broadly neutralizing antibodies (bnAbs) against HIV's Envelope (Env) by immunizing cows, which show a reliable response compared to common animal models.
  • - Two groups of cows were given different regimens of V2-apex focusing immunogens, resulting in some cows producing serum neutralizing antibodies specifically targeting the V2-apex region of Env.
  • - The successful isolation of bnAbs from the cows, particularly those with ultralong CDRH3 regions, indicates that these antibodies are more effective in responding to highly glycosylated proteins like HIV Env.
View Article and Find Full Text PDF