We have studied a possible evolution process permitting a 'primitive' membrane to evolve towards a membrane structure with an outer wall, similar to that of bacteria. We have investigated whether a polysaccharide bearing hydrophobic phytyl or cholesteryl chains coats giant vesicles made of single- or double-chain lipids. Phytyl-pullulan 5b was found to bind to the surface of vesicles made of either single- or double-chain lipids.
View Article and Find Full Text PDFPolyprenyl phosphates, as well as polyprenyl alcohols bearing different isopentenyl C(5) units, have been synthesized. The pH range of spontaneous vesicle formation of polyprenyl phosphates with or without polyprenyl alcohols was defined by fluorescence microscopy. A variety of the acyclic or monocyclic polyprenyl phosphates studied formed stable vesicles in water over a wide range of pHs, and the addition of polyprenyl alcohols allowed the vesicle formation of polyprenyl phosphates at higher pHs.
View Article and Find Full Text PDFWe have postulated earlier that the highly branched isoprenoid alkanes, which are distributed widely in many sediments, may have been derived from the corresponding branched polyprenyl phosphates, potentially present in biomembranes in primitive organisms. These polyprenyl-branched polyprenyl phosphates might be derived by a simple alkylation from non-substituted polyprenyl phosphates, which we postulate to be the precursors of all membrane terpenoids. We have now synthesized a series of 6-(poly)prenyl-substituted polyprenyl phosphates and studied the formation of vesicles from these phosphates, as a function of the substituted-chain length, the position of the double bond, and pH.
View Article and Find Full Text PDF