Publications by authors named "G Onishchukov"

An advanced design of the analytical ultracentrifuge with multiwavelength emission detection (MWE-AUC) is presented which offers outstanding performance concerning the spectral resolution and range flexibility as well as the quality of the data acquired. The excitation by a 520 nm laser is complemented with a 405 nm laser. An external spectrograph with three switchable tunable gratings permits optimisation of the spectral resolution in an order of magnitude range while keeping the spectral region broad.

View Article and Find Full Text PDF

Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals.

View Article and Find Full Text PDF

In this study, a new detector for multiwavelength emission analytical ultracentrifugation (MWE-AUC) is presented, which allows measuring size- or composition-dependent fluorescence properties of nanoparticle ensembles. Validation of the new setup is carried out comparison to a benchtop photoluminescence spectrometer and the established extinction-based multiwavelength analytical ultracentrifuge (MWL-AUC). The results on fluorescent proteins and silica particles demonstrate that the new device not only correctly reproduces sedimentation and diffusion coefficients of the particles but provides also meaningful fluorescence spectra.

View Article and Find Full Text PDF

Synthetic photonic lattices provide unique capabilities to realize theoretical concepts emerging in different fields of wave physics via the utilization of powerful photonic technologies. Here we observe experimentally Anderson localization for optical pulses in time domain, using a photonic mesh lattice composed of coupled fiber loops. We introduce a random potential through programmed electro-optic pulse phase modulation, and identify the localization features associated with varying degree of disorder.

View Article and Find Full Text PDF

The performance of cascaded in-line phase-preserving amplitude regeneration using nonlinear amplifying loop mirrors has been studied in numerical simulations. As an example of a spectrally efficient modulation format with two amplitude states and multiple phase states, the regeneration performance of a star-16QAM format, basically an 8PSK format with two amplitude levels, was evaluated. An increased robustness against amplified spontaneous emission and nonlinear phase noise was observed resulting in a significantly increased transmission distance.

View Article and Find Full Text PDF