Genes are frequently lost or gained in malignant tumors and the analysis of these changes can be informative about the underlying tumor biology. Retinoblastoma is a pediatric intraocular malignancy, and since deletions in chromosome 13 have been described in this tumor, we performed genome wide sequencing with the Illumina platform to test whether recurrent losses could be detected in low coverage data from DNA pools of Rb cases. An in silico reference profile for each pool was created from the human genome sequence GRCh37p5; a chromosome integrity score and a graphics 40 Kb window analysis approach, allowed us to identify with high resolution previously reported non random recurrent losses in all chromosomes of these tumors.
View Article and Find Full Text PDFIn this study we evaluate the capacity of Virtual Hybridization to identify between highly related bacterial strains. Eight genomic fingerprints were obtained by virtual hybridization for the Bacillus anthracis genome set, and a set of 15,264 13-nucleotide short probes designed to produce genomic fingerprints unique for each organism. The data obtained from each genomic fingerprint were used to obtain hybridization patterns simulating a DNA microarray.
View Article and Find Full Text PDFHelicobacter pylori strains are the major risk factor for gastric cancer. Strains vary in their content of disease-associated genes, so genome-wide analysis of cancer-isolated strains will help elucidate their pathogenesis and genetic diversity. We present the draft genome sequence of H.
View Article and Find Full Text PDFAn Influenza Probe Set (IPS) consisting in 1,249 9-mer probes for genomic fingerprinting of closely and distantly related Influenza Virus strains was designed and tested in silico. The IPS was derived from alignments of Influenza genomes. The RNA segments of 5,133 influenza strains having diverse degree of relatedness were concatenated and aligned.
View Article and Find Full Text PDFUnlabelled: The Virtual Hybridization approach predicts the most probable hybridization sites across a target nucleic acid of known sequence, including both perfect and mismatched pairings. Potential hybridization sites, having a user-defined minimum number of bases that are paired with the oligonucleotide probe, are first identified. Then free energy values are evaluated for each potential hybridization site, and if it has a calculated free energy of equal or higher negative value than a user-defined free energy cut-off value, it is considered as a site of high probability of hybridization.
View Article and Find Full Text PDF