Publications by authors named "G Ohrwall"

Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na, Mg, and Al ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed.

View Article and Find Full Text PDF

One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface.

View Article and Find Full Text PDF

Ammonium nitrate in aqueous solution was investigated with synchrotron radiation based photoelectron spectroscopy using two types of liquid jet nozzles. Electron emission from a cylindrical microjet of aqueous ammonium nitrate solution was measured at two different angles relative to the horizontal polarization of the incident synchrotron radiation, 90° and 54.7° (the "magic angle"), for a range of photon energies (470-530 eV).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the electronic structure of aqueous Cu is affected by the creation of Cu 2p core holes, revealing a shift in the highest occupied molecular orbitals from metal to water.
  • The research identifies the generation of new bonding and antibonding orbitals due to the energy drop in Cu 3d levels, impacting the shakeup excitations related to the surrounding water molecules.
  • Additionally, the findings explain how the presence of satellite features in the X-ray photoelectron spectrum provides insights into the arrangement and dipole moment distribution of water molecules surrounding the Cu ion.
View Article and Find Full Text PDF

BiO is a promising material for solid-oxide fuel cells (SOFC) due to the high ionic conductivity of some phases. The largest value is reached for its δ-phase, but it is normally stable at temperatures too high for SOFC operation, while nanostructured oxide is believed to have more suitable stabilization temperature. However, to manufacture such a material with a controlled chemical composition is a challenging task.

View Article and Find Full Text PDF