Sepsis is a life-threatening condition characterized by uncontrolled systemic inflammation and coagulation, leading to multiorgan failure. Therapeutic options to prevent sepsis-associated immunopathology remain scarce. Here, we established a mouse model of long-lasting disease tolerance during severe sepsis, manifested by diminished immunothrombosis and organ damage in spite of a high pathogen burden.
View Article and Find Full Text PDFAtherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs) and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs, but the physiology of this interaction is largely unknown.
View Article and Find Full Text PDFThrombosis and its associated complications are a major cause of morbidity and mortality worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recognized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying factors targeting MV-driven coagulation may help in the development of novel antithrombotic treatments.
View Article and Find Full Text PDFBackground And Aims: Von Willebrand factor (VWF) plays an important role in thrombogenesis and mediates platelet adhesion particularly under high shear stress. Such conditions are generally found in stenotic arteries and can eventually cause myocardial infarction or stroke. We aimed to study whether levels of VWF antigen (VWF:Ag) predict future major adverse cardiovascular events (MACE) in patients suffering from carotid artery stenosis.
View Article and Find Full Text PDFRationale: Extracellular vesicles, including microvesicles, are increasingly recognized as important mediators in cardiovascular disease. The cargo and surface proteins they carry are considered to define their biological activity, including their inflammatory properties. Monocyte to endothelial cell signaling is a prerequisite for the propagation of inflammatory responses.
View Article and Find Full Text PDF