The eukaryotic red alga Cyanidioschyzon merolae 10D is an emerging algal host for synthetic biology and metabolic engineering. Its small nuclear genome (16.5 Mb; 4775 genes), low intron content (39), stable transgene expression, and capacity for homologous recombination into its nuclear genome make it ideal for genetic and metabolic engineering endeavors.
View Article and Find Full Text PDFTerpenoids play key roles in cellular metabolism and can have specialized functions. Their heterologous production in microbial hosts offers an alternative to natural extraction. Here, we developed a subcellular engineering approach in the model green alga Chlamydomonas reinhardtii by targeting both sesquiterpenoid synthases and cytochrome P450s (CYPs) to the plastid, exploiting its photosynthetic electron transport chain to drive CYP-mediated oxidation without reductase partners.
View Article and Find Full Text PDFGastric heterotopia (GH) is a rare cause of gastrointestinal bleeding. GH of the small bowel is rare, and the duodenum is more commonly involved than the jejunum. Here, we present five cases of GH involving the duodenum and jejunum, with presentations including gastrointestinal bleeding, symptomatic anemia, and no symptoms.
View Article and Find Full Text PDFFunctional hyperemia-activity-dependent increases in local blood perfusion-underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling.
View Article and Find Full Text PDFFunctional hyperemia - activity-dependent increases in local blood perfusion - underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling.
View Article and Find Full Text PDF