Publications by authors named "G O Stewart"

Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.

View Article and Find Full Text PDF

Computer-assisted surgery is becoming essential in modern medicine to accurately plan, guide, and perform surgeries. Similarly, Digital Twin technology is expected to be instrumental in the future of surgery, owing to its capacity to virtually replicate patient-specific interventions whilst providing real-time updates to clinicians. This perspective introduces the term Digital Twin-Assisted Surgery and discusses its potential to improve surgical precision and outcome, along with key challenges for successful clinical translation.

View Article and Find Full Text PDF

Background: Accurate estimates of personal exposure to ambient air pollution are difficult to obtain and epidemiological studies generally rely on residence-based estimates, averaged spatially and temporally, derived from monitoring networks or models. Few epidemiological studies have compared the associated health effects of personal exposure and residence-based estimates.

Objective: To evaluate the association between exposure to air pollution and cognitive function using exposure estimates taking mobility and location into account.

View Article and Find Full Text PDF

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF