High circulating cholesterol and its deregulated homeostasis may facilitate prostate cancer progression. Genetic polymorphism in Apolipoprotein (Apo) E, a key cholesterol regulatory protein may effect changes in systemic cholesterol levels. In this investigation, we determined whether variants of the Apo E gene can trigger defective intracellular cholesterol efflux, which could promote aggressive prostate cancer.
View Article and Find Full Text PDFClin Epidemiol
October 2012
Background: To date there has not been any nationwide age-standardized incidence data reported for prostate cancer in Nigeria. We examined and integrated diverse trends in the age-specific incidence of prostate cancer into a comprehensive trend for Nigeria, and examined how best the existing data could generate a countrywide age-standardized incidence rate for the disease.
Methods: Data were obtained from studies undertaken between 1970 and 2007 in referral hospital-based cancer registries.
Background: The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol-enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream-regulated gene 1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor.
Methods: PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72h, followed by trypan blue dye-exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis.
The search for a classic biomarker for prostate cancer has been on for a very long time, and it is still elusive. Despite the extensive and prolonged use of the prostate-specific antigen (PSA) as a screening tool for prostate cancer, many clinicians still identify its limitations in the grading of tumors, and monitoring of response to treatment. These limitations are based on the concealment of cancer by low levels of PSA, and over diagnosis and over treatment that are resultant of excessively high levels of antigens.
View Article and Find Full Text PDFBackground: The purpose of our study was to show the apoptotic and anti-proliferative effects of phytosterols as distinct from cholesterol effects on prostate cancer cell lines, and also their differential expression of caveolin-1, and a prostate specific gene, PCGEM1.
Methods: PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 48h, followed by trypan blue dye exclusion measurement of cytotoxicity and MTT cell proliferation assays, respectively. Cell cycle analysis was carried out microscopically, and by propidium iodide uptake using flow cytometry.