Electronic exchange of health care data demands code/terminology systems. In the Scandinavian countries, the IFCC-IUPAC's Nomenclature for Properties and Units (NPU) terminology is used for results in biochemistry, pharmacology, and immunology. Implementation, use and administration of NPU has differed between the countries despite similar health care and lab sectors.
View Article and Find Full Text PDFInternational consensus supports the development of standardized protocols for measured glomerular filtration rate (mGFR) to facilitate the integration of mGFR testing in both clinical and research settings. To this end, the European Kidney Function Consortium convened an international group of experts with relevant experience in mGFR. The working group performed an extensive literature search to inform the development of recommendations for mGFR determination using 1-compartment plasma clearance models and iohexol as the exogenous filtration marker.
View Article and Find Full Text PDFMicrodroplet resonators provide an excellent tool for optical studies of water, but water microdroplets are difficult to maintain outside a carefully controlled environment. We present a method for maintaining a water microdroplet resonator on a 3D-printed hydrophobic surface in an ambient environment. The droplet is maintained through a passive microfluidic system that supplies water to the droplet through a vertical channel at a rate equivalent to its evaporation.
View Article and Find Full Text PDFIn this work, we present a new 3D printing technique that enables the realization of native digital micro-mirror device (DMD) resolution in negative features of a 3D printed part without improving 3D printer hardware and demonstrate the fabrication of fully integrated, biocompatible isoporous membranes with pore sizes as small as 7 μm. We utilize this technique to construct a microfluidic device that mimics an established organ-on-a-chip configuration, including an integrated isoporous membrane. Two cell populations are seeded on either side of the membrane and imaged as a proof of concept for other organ-on-a-chip applications.
View Article and Find Full Text PDFBackground: Preterm birth (PTB) is a leading cause of neonatal mortality, such that the need for a rapid and accurate assessment for PTB risk is critical. Here, we developed a 3D printed microfluidic system that integrated solid-phase extraction (SPE) and microchip electrophoresis (μCE) of PTB biomarkers, enabling the combination of biomarker enrichment and labeling with μCE separation and fluorescence detection.
Results: Reversed-phase SPE monoliths were photopolymerized in 3D printed devices.