Publications by authors named "G Nadel"

Article Synopsis
  • - The study investigates how GqPCR activation, typically associated with cell survival through the PI3K/AKT pathway, can instead trigger apoptosis in certain cells by inactivating AKT via a PP2Ac switch, a mechanism not fully understood prior.
  • - Researchers identified Ser24 as a crucial phosphorylation site on PP2Ac, primarily regulated by classical PKCs, and demonstrated that altering this site (using S24A and S24E mutations) affects the activation and function of the PP2A switch leading to increased JNK-dependent apoptosis.
  • - The findings suggest that targeting the PKC-mediated phosphorylation of Ser24-PP2Ac could offer new therapeutic strategies for treating specific cancers or endocrine disorders.
View Article and Find Full Text PDF

The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers.

View Article and Find Full Text PDF

Background: G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH.

View Article and Find Full Text PDF

Background/aims: Gq protein-coupled receptors (GqPCRs) regulate various cellular processes including mainly proliferation and differentiation. In a previous study, we found that in prostate cancer cells, the GqPCR of GnRH induces apoptosis by reducing the PKC-dependent AKT activity and elevating JNK phosphorylation. Since it was thought that GqPCR induces mainly activation of AKT, we undertook to examine how general is this phenomenon and understand its signaling.

View Article and Find Full Text PDF

We here report that preservation of the basic epithelial-mesenchymal interactions allows for highly complex ex vivo function of epidermal cells. The approach taken is based on the preparation of organ fragments that preserve the basic epithelial/mesenchymal interactions but also ensure appropriate diffusion of nutrients and gases to all cells. Human and mice keratinocytes in such organ fragments, remain viable, proliferate and express epidermal-specific gene products when cultured in serum-free medium without added growth factors, for several weeks in vitro.

View Article and Find Full Text PDF