Publications by authors named "G N KONSTANTINOVA"

A new platform has been developed to facilitate the production of biologically active proteins and peptides in Escherichia coli. The platform includes an N-terminal self-associating L KD peptide fused to the SUMO protein (small ubiquitin-like protein modifier) from the yeast Saccharomyces cerevisiae, which is known for its chaperone activity. The target proteins are fused at the C termini of the L KD-SUMO fusions, and the resulting three-component fusion proteins are synthesized and self-assembled in E.

View Article and Find Full Text PDF

The carboxypeptidase T (CPT) from Thermoactinomyces vulgaris has an active site structure and 3D organization similar to pancreatic carboxypeptidases A and B (CPA and CPB), but differs in broader substrate specificity. The crystal structures of CPT complexes with the transition state analogs N-sulfamoyl-L-leucine and N-sulfamoyl-L-glutamate (SLeu and SGlu) were determined and compared with previously determined structures of CPT complexes with N-sulfamoyl-L-arginine and N-sulfamoyl-L-phenylalanine (SArg and SPhe). The conformations of residues Tyr255 and Glu270, the distances between these residues and the corresponding ligand groups, and the Zn-S gap between the zinc ion and the sulfur atom in the ligand's sulfamoyl group that simulates a distance between the zinc ion and the tetrahedral sp3-hybridized carbon atom of the converted peptide bond, vary depending on the nature of the side chain in the substrate's C-terminus.

View Article and Find Full Text PDF

It is generally accepted that the primary specificity of metallocarboxypeptidases is mainly determined by the structure of the so-called primary specificity pocket. However, the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT) with the primary specificity pocket fully reproducing the one in pancreatic carboxypeptidase B (CPB) retained the broad, mainly hydrophobic substrate specificity of the wild-type enzyme. In order to elucidate factors affecting substrate specificity of metallocarboxypeptidases and the reasons for the discrepancy with the established views, we have solved the structure of the complex of the CPT G215S/A251G/T257A/D260G/T262D mutant with the transition state analogue N-sulfamoyl-L-phenylalanine at a resolution of 1.

View Article and Find Full Text PDF

The modified asparaginase Was79 was derived from the recombinant wild-type L-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125-8000 IU/kg).

View Article and Find Full Text PDF