Publications by authors named "G N Dudnikova"

Existing RF ion sources for accelerators have specific efficiencies for H(+) and H(-) ion generation ∼3-5 mA/cm(2) kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H(-) ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm(2) kW.

View Article and Find Full Text PDF

Factors limiting operating lifetime of a Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. Increased cooling permeate increased discharge power and increased beam intensity and duty factor. A design of an advanced CSPS with geometrical focusing of H(-) flux is presented.

View Article and Find Full Text PDF

We report on the acceleration of impurity-free quasimononenergetic proton beams from an initially gaseous hydrogen target driven by an intense infrared (λ=10 μm) laser. The front surface of the target was observed by optical probing to be driven forward by the radiation pressure of the laser. A proton beam of ∼MeV energy was simultaneously recorded with narrow energy spread (σ∼4%), low normalized emittance (∼8 nm), and negligible background.

View Article and Find Full Text PDF

In this project we are developing an H(-) source which will synthesize the most important developments in the field of negative ion sources to provide high current, high brightness, good lifetime, high reliability, and high power efficiency. We describe two planned modifications to the present spallation neutron source external antenna source in order to increase the plasma density near the output aperture: (1) replacing the present 2 MHz plasma-forming solenoid antenna with a 13 MHz saddle-type antenna and (2) replacing the permanent multicusp magnetic system with a weaker electromagnet.

View Article and Find Full Text PDF

Generation of relativistic electrons from the interaction of a laser pulse with a high density plasma foil, accompanied by an underdense preplasma in front of it, has been studied with two-dimensional particle-in-cell (PIC) simulations for pulse durations comparable to a single cycle and for single-wavelength spot size. The electrons are accelerated predominantly in forward direction for a preplasma longer than the pulse length. Otherwise, both forward and backward electron accelerations occur.

View Article and Find Full Text PDF