Publications by authors named "G N Demartino"

Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy.

View Article and Find Full Text PDF

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling.

View Article and Find Full Text PDF

PI31 (roteasome nhibitor of ,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits.

View Article and Find Full Text PDF
Article Synopsis
  • - Activity-regulated cytoskeleton-associated protein (Arc) is crucial for various types of synaptic plasticity, such as long-term potentiation and depression, and can also form virus-like particles to facilitate mRNA transport between cells.
  • - Arc undergoes several post-translational modifications, particularly phosphorylation by protein kinase C (PKC), which occurs on specific serine residues, affecting its function.
  • - Mutating these serines to mimic phosphorylation leads to reduced palmitoylation, impaired nucleic acid binding, and instability of Arc oligomers, suggesting that PKC phosphorylation may restrict synaptic weakening and mRNA transport.
View Article and Find Full Text PDF

Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear.

View Article and Find Full Text PDF