Endolysins of bacteriophages, which degrade the bacterial cell wall peptidoglycan, are applicable in many industries to deal with biofilms and bacterial infections. While multi-domain endolysins have both enzymatically active and cell wall-binding domains, single-domain endolysins consist only of an enzymatically active domain, and their mechanism of peptidoglycan binding remains unexplored, for this is a challenging task experimentally. This research aimed to explore the binding mechanism of endolysins using computational approaches, namely molecular docking and bioinformatical tools, and analyze the performance of these approaches.
View Article and Find Full Text PDFViruses are the most numerous biological form living in any ecosystem. Viral diseases affect not only people but also representatives of fauna and flora. The latest pandemic has shown how important it is for the scientific community to respond quickly to the challenge, including critically assessing the viral threat and developing appropriate measures to counter this threat.
View Article and Find Full Text PDFCharacterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data.
View Article and Find Full Text PDFProper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule.
View Article and Find Full Text PDFThe entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex.
View Article and Find Full Text PDF