Publications by authors named "G Munson"

Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated.

View Article and Find Full Text PDF

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how DNA sequences work to control gene expression in different cell types, but it's been hard to figure out how these sequences affect gene activity.
  • They created a new method called Variant-FlowFISH to test many tiny changes in DNA and see how they change gene expression, using advanced tools like CRISPR.
  • By testing 672 different changes, they found that many can really change gene activity, and some changes work differently in different types of cells, which helps improve predictions about how genes are controlled.
View Article and Find Full Text PDF

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes.

View Article and Find Full Text PDF