Publications by authors named "G Moschini"

Fibrosis is the final path of nearly every form of chronic disease, regardless of the pathogenesis. Upon chronic injury, activated, fibrogenic fibroblasts deposit excess extracellular matrix, and severe tissue fibrosis can occur in virtually any organ. However, antifibrotic therapies that target fibrogenic cells, while sparing homeostatic fibroblasts in healthy tissues, are limited.

View Article and Find Full Text PDF

Musculoskeletal models have the potential to improve diagnosis and optimize clinical treatment by predicting accurate outcomes on an individual basis. However, the subject-specific modeling of spinal alignment is often strongly simplified or is based on radiographic assessments, exposing subjects to unnecessary radiation. We therefore developed and introduced a novel skin marker-based approach for modeling subject-specific spinal alignment and evaluated its feasibility by comparing the predicted L1/L2 spinal loads during various functional activities with the loads predicted by the generically scaled models as well as with in vivo measured data obtained from the OrthoLoad database.

View Article and Find Full Text PDF

There is a long-held belief that physical activities such as lifting with a flexed spine is generally harmful for the back and can cause low back pain (LBP), potentially reinforcing fear-avoidance beliefs underlying pain-related fear. In patients with chronic LBP, pain-related fear has been shown to be associated with reduced lumbar range of motion during lifting, suggesting a protective response to pain. However, despite short-term beneficial effects for tissue health, recent evidence suggests that maintaining a protective trunk movement strategy may also pose a risk for (persistent) LBP due to possible pronociceptive consequences of altered spinal motion, potentially leading to increased loading on lumbar tissues.

View Article and Find Full Text PDF

The pre-metastatic niche (PMN) is a tumor-driven microenvironment in distant organs that can foster and support the survival and growth of disseminated tumor cells. This facilitates the establishment of secondary lesions that eventually form overt metastasis, the main cause of cancer-related death. In recent years, tumor-derived extracellular-vesicles (EVs) have emerged as potentially key drivers of the PMN.

View Article and Find Full Text PDF

The definition of target alignment for spinal fusion surgery follows anatomical criteria and strongly relies on surgical experience. However, the optimal patient-specific alignment often remains unknown. Statistical models could provide information about physiological alignments, and musculoskeletal models are powerful tools to investigate biomechanics.

View Article and Find Full Text PDF