Anurans are famous for having evolved a highly simplified skull through bone loss and fusion events. Nevertheless, their skeleton displays a rich morphological diversity associated with adaptations to diverse lifestyles and ecological niches. Here, we report larval skull ossification in the Andean toad Rhinella spinulosa (Bufonidae), and compare it to the phylogenetically distant genetic model organism Xenopus tropicalis (Pipidae).
View Article and Find Full Text PDFWhether the forelimb-digging apparatus of tooth-digging subterranean mammals has similar levels of specialization as compared to scratch-diggers is still unknown. We assessed the scapular morphology and forelimb musculature of all four solitary African mole rats (Bathyergidae): two scratch-diggers, Bathyergus suillus and Bathyergus janetta, and two chisel-tooth diggers, Heliophobius argenteocinereus and Georychus capensis. Remarkable differences were detected: Bathyergus have more robust neck, shoulder, and forearm muscles as compared to the other genera.
View Article and Find Full Text PDFThe Miocene Caragua fossil fauna in northern Chile contains a considerable number (7) of articulated partial skeletons tentatively assigned to Caraguatypotherium munozi (Notoungulata, Mesotheriidae), which presents up to 40% body size difference. Since either inter- and intra- specific wide size range has been observed in the Mesotheriidae family in general, we wanted explore the ontogenic stage signature of the sample, by carrying out the first comprehensive paleohistological description of the appendicular system in Notoungulata. Results show that: 1) they can be classified as subadults and adults, based on the presence of bone tissues typical of ceased somatic growth; 2) there is a notorious inter-skeletal variation on bone growth rates (skeletal modularity), particularly, the humerus showed a slower diameter growth and less remodelling than the femur, resulting as a better element for ontogenetic analyses; 3) marked cyclical growth is observed, characterised by fast early ontogenic continuous growth, and subsequent fast/slow stratified bone tissue layering.
View Article and Find Full Text PDFLife underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family.
View Article and Find Full Text PDF