The arylsulfatase A (ARSA) gene is observed to be deficient in patients with metachromatic leukodystrophy (MLD), a type of lysosomal storage disease. MLD is a severe neurodegenerative disorder characterized by an autosomal recessive inheritance pattern. This study aimed to map the most deleterious mutations at the metal binding sites of ARSA and the amino acids in proximity to the mutated positions.
View Article and Find Full Text PDFEffective treatment of orthopedic implant-associated infections (IAIs) remains a clinical challenge. The in vitro and in vivo studies presented herein evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) to titanium implants inoculated with preformed bacterial biofilms of methicillin-resistant Staphylococcus aureus (MRSA). The in vitro studies showed that combining vancomycin therapy (500 µg/mL) with application of CVCES at -1.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are promising candidates for surface coatings to control biofilm growth on water treatment membranes because of their broad activity and the low tendency of bacteria to develop resistance to AMPs. However, general and convenient surface modification methods are limited, and a deeper understanding of the antimicrobial mechanism of action is needed for surface-attached AMPs. Here, we show a method for covalently attaching AMPs on porous ultrafiltration membranes using ink-jet printing and provide insight into the mode of action for the covalently tethered peptide RWRWRWA-(Bpa) (Bpa, 4-benzophenylalanine) against .
View Article and Find Full Text PDFThe synergistic effect of antimicrobial compounds is an important phenomenon that can increase the potency of treatment and might be useful against the formation of biofilms on surfaces. A strong inhibition of microbial viability on surfaces can potentially delay the development of biofilms on treated surfaces, thereby enhancing the performance of water-purification technologies and medical devices, for example, to prevent hospital-acquired infections. However, the synergistic effects of surface-immobilized antimicrobial peptides (AMPs) have not yet been reported.
View Article and Find Full Text PDF