Epilepsy is characterized by recurrent, unprovoked seizures. Accurate prediction of seizure occurrence has long been a clinical goal since this would allow to optimize patient treatment, prevent injuries due to seizures, and alleviate the patient burden of unpredictability. Advances in implantable electroencephalographic (EEG) devices, allowing for long-term interictal EEG recordings, have facilitated major progress in this field.
View Article and Find Full Text PDFWearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics.
View Article and Find Full Text PDFObjective: In temporal lobe epilepsy (TLE), a taxonomy classifying patients into 3 cognitive phenotypes has been adopted: minimally, focally, or multidomain cognitively impaired (CI). We examined gray matter (GM) thickness patterns of cognitive phenotypes in drug-resistant TLE and assessed potential use for predicting postsurgical cognitive outcomes.
Methods: TLE patients undergoing presurgical evaluation were categorized into cognitive phenotypes.
Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates.
View Article and Find Full Text PDFIn the context of circular economy and heavy metal (HM) recovery from municipal solid waste incineration (MSWI) fly ash (FA), detailed knowledge of HM binding forms is required for achieving higher extraction rates. The FA mineralogy is still poorly understood due to its low grain size and low metal concentration. To investigate the HM binding forms, a sophisticated thermodynamic reactive transport model was developed to simulate ash-forming processes.
View Article and Find Full Text PDF