Publications by authors named "G Minadakis"

Bacterial Wars (BW) is a network-based tool that applies a two-step pipeline to display information on the competition of bacterial species found in the same microbiome. It utilizes antimicrobial peptide (AMP) sequence similarities to obtain a relationship between species. The working hypothesis (putative AMP defense) is that friendly species share sequence similarity among the putative AMPs of their proteomes and are therefore immune to their AMPs.

View Article and Find Full Text PDF

PathIN is a web-service that provides an easy and flexible way for rapidly creating pathway-based networks at several functional biological levels: genes, compounds and reactions. The tool is supported by a database repository of reference pathway networks across a large set of species, developed through the freely available information included in the KEGG, Reactome and Wiki Pathways database repositories. PathIN provides networks by means of five diverse methodologies: (a) direct connections between pathways of interest, (b) direct connections as well as the first neighbours of the given pathways, (c) direct connections, the first neighbours and the connections in between them, and (d) two additional methodologies for creating complementary pathway-to-pathway networks that involve additional (missing) pathways that interfere in-between pathways of interest.

View Article and Find Full Text PDF

We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets.

View Article and Find Full Text PDF

A fundamental issue related to the understanding of the molecular mechanisms, is the way in which common pathways act across different biological experiments related to complex diseases. Using network-based approaches, this work aims to provide a numeric characterization of pathways across different biological experiments, in the prospect to create unique footprints that may characterise a specific disease under study at a pathway network level. In this line we propose PathExNET, a web service that allows the creation of pathway-to-pathway expression networks that hold the over- and under expression information obtained from differential gene expression analyses.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic is likened to the 1918 Influenza outbreak, with the virus expected to become an endemic disease featuring seasonal spikes.
  • In response to COVID-19, a team has created a computational drug repurposing method using multi-omic data to identify and rank potential treatments for the virus.
  • Their findings included already known effective drugs like dexamethasone and remdesivir, as well as new candidates such as Src tyrosine kinase inhibitors and specific immunomodulators that may effectively target COVID-19 mechanisms.
View Article and Find Full Text PDF