Publications by authors named "G Miaoulis"

The persistent increase in the magnitude of urban data, combined with the broad range of sensors from which it derives in modern urban environments, poses issues including data integration, visualization, and optimal utilization. The successful selection of suitable locations for predetermined commercial activities and public utility services or the reuse of existing infrastructure arise as urban planning challenges to be addressed with the aid of the aforementioned data. In our previous work, we have integrated a multitude of publicly available real-world urban data in a visual semantic decision support environment, encompassing map-based data visualization with a visual query interface, while employing and comparing several classifiers for the selection of appropriate locations for establishing parking facilities.

View Article and Find Full Text PDF

Accurate estimation of transportation flow is a challenging task in Intelligent Transportation Systems (ITS). Transporting data with dynamic spatial-temporal dependencies elevates transportation flow forecasting to a significant issue for operational planning, managing passenger flow, and arranging for individual travel in a smart city. The task is challenging due to the composite spatial dependency on transportation networks and the non-linear temporal dynamics with mobility conditions changing over time.

View Article and Find Full Text PDF

The analysis of business processes based on their observed behavior recorded in event logs can be performed with process mining. This method can discover, monitor, and improve processes in various application domains. However, the process models produced by typical process discovery methods are difficult for humans to understand due to their high complexity (the so-called "spaghetti-like" process models).

View Article and Find Full Text PDF

The advancement of sensing technologies coupled with the rapid progress in big data analysis has ushered in a new era in intelligent transport and smart city applications. In this context, transportation mode detection (TMD) of mobile users is a field that has gained significant traction in recent years. In this paper, we present a deep learning approach for transportation mode detection using multimodal sensor data elicited from user smartphones.

View Article and Find Full Text PDF

The constantly increasing amount and availability of urban data derived from varying sources leads to an assortment of challenges that include, among others, the consolidation, visualization, and maximal exploitation prospects of the aforementioned data. A preeminent problem affecting urban planning is the appropriate choice of location to host a particular activity (either commercial or common welfare service) or the correct use of an existing building or empty space. In this paper, we propose an approach to address these challenges availed with machine learning techniques.

View Article and Find Full Text PDF