Publications by authors named "G Merkel"

Phenylalanine hydroxylase (PAH) is an allosteric enzyme that maintains phenylalanine (Phe) below neurotoxic levels; its failure results in phenylketonuria, an inborn error of amino acid metabolism. Wild type (WT) PAH equilibrates among resting-state (RS-PAH) and activated (A-PAH) conformations, whose equilibrium position depends upon allosteric Phe binding. The RS-PAH conformation of WT rat PAH (rPAH) contains a cation-π sandwich involving Phe80 that cannot exist in the A-PAH conformation.

View Article and Find Full Text PDF

Background: Krabbe disease (KD) is an inherited leukodystrophy due to a defect in the GALC gene which encodes the lysosomal galactosylceramide β-galactosidase (GALC). About two thirds of patients show the early onset form of KD dominated by cerebral demyelination leading to death in early infancy. Late onset forms include a spectrum of late infantile, juvenile and adult clinical courses.

View Article and Find Full Text PDF

We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains.

View Article and Find Full Text PDF

Background: We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins.

Methodology/results: Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN.

View Article and Find Full Text PDF

In the initial step of integration, retroviral integrase (IN) introduces precise nicks in the degenerate, short inverted repeats at the ends of linear viral DNA. The scissile phosphodiester bond is located immediately 3' of a highly conserved CA/GT dinucleotide, usually 2 bp from the ends. These nicks create new recessed 3'-OH viral DNA ends that are required for joining to host cell DNA.

View Article and Find Full Text PDF