Publications by authors named "G McElhaney-Feser"

Development of Candida spp. biofilms on medical devices such as catheters and voice prosthesis has been recognized as an increasing clinical problem. Simple device removal is often impossible, while in addition, resulting candidal infections are difficult to resolve due to their increased resistance to many antifungal agents.

View Article and Find Full Text PDF

Microtiter based candidal biofilm formation is commonly being used. Here we describe the analysis of factors influencing the development of candidal biofilms such as the coating with serum, growth medium and pH. The data reported here show that optimal candidal biofilm formation is obtained when grown in unbuffered YNB at pH 7, in wells that have been coated with Fetal Calf Serum or Fetal Bovine Serum.

View Article and Find Full Text PDF

A systematic screen for new natural products that displayed antifungal activity by inhibition of fungal fatty acid synthase (FAS) led to the discovery of two new fungal metabolites, designated CT2108A (1) and CT2108B (2). The metabolites were produced by Penicillium solitum (Westling) strain CT2108 and were classified as azaphilones. The structures of these new metabolites were determined using a variety of 1D and 2D NMR experiments, including COSY, HMQC, and HMBC.

View Article and Find Full Text PDF

The candidacidal activity of nitric oxide (NO) as delivered by a class of compounds termed diazeniumdiolates has been investigated. Diazeniumdiolates are stable agents capable of releasing NO in a biologically usable form at a predicted rate, and three such compounds were examined for activity. One compound, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (DETA-NO), proved to be most suitable for examining NO activity due to its relatively long half-life (20 h) and because of limited candidacidal activity of the uncomplexed DETA nucleophile.

View Article and Find Full Text PDF

Disruption of both alleles of the Candida albicans FAS2 gene abolishes the ability of the organism to establish infection in a murine model of systemic candidiasis. Within 72 h all mice inoculated with 10(6) CFU of the parental C. albicans strain had died.

View Article and Find Full Text PDF