Publications by authors named "G Mazzi"

Article Synopsis
  • * Research on their behavior and impact in aquatic environments is limited, with the focus primarily on urban areas.
  • * A study discovered eight benzothiazoles in Arctic atmospheric aerosol over a year, revealing local, soil, and long-range transport sources, highlighting the need for more research in various settings.
View Article and Find Full Text PDF

Plant protection products (PPPs) play a fundamental role in the maintenance of agricultural fields and private/public green areas, however they can contaminate zones nearby the application point due to wind drift, resuspension, and evaporation. Several studied have deepened the relationship between PPPs and living beings' health, suggesting that these products might have a negative influence. Some PPPs belong to the class of Emergent Contaminants, which are compounds whose knowledge on the environmental distribution and influence is limited.

View Article and Find Full Text PDF

The study about how tyre-derived particles can potentially worsen the water quality and how traffic pollution markers can affect the environment is crucial for environmental management. Road emissions are known to contribute to pollution in various environments, and benzothiazoles and their derivates can be used to trace pollutant inputs related to surface runoff in the aquatic system. A total of eight benzothiazoles were determined in highway stormwater runoff and road dust collected from February to August 2022 near Venice (Casale sul Sile, Veneto Region, Italy).

View Article and Find Full Text PDF

Fish health can be affected by a multitude of stressors. Acute and chronic stress assessment via specific hormones monitoring has become a trending research topic. Common investigated matrices are blood and plasma, but recently less invasive substrates have been identified.

View Article and Find Full Text PDF

5-Hydroxymethylfurfural (HMF) is a bio-based platform chemical that can be used as a building block to produce several compounds with diverse applications. Even though HMF synthesis holds promise for a greener future, the current state of technology and the high production cost limit its competitiveness on an industrial scale. In this prospect, we have developed a multigram-scale procedure for HMF by reacting d-fructose with Purolite CT275DR-an acidic resin-in a dimethyl carbonate (DMC)/tetraethyl ammonium bromide (TEAB) biphasic system.

View Article and Find Full Text PDF