Bloodstream infection (BSI) caused by carbapenem-resistant (KP) poses significant challenges, particularly when the infecting isolate carries multiple antimicrobial resistance (AMR) genes/determinants. This study, employing short- and long-read whole-genome sequencing, characterizes six New Delhi metallo-β-lactamase (NDM) 1 and KP carbapenemase (KPC) 3 co-producing KP isolates, the largest cohort investigated in Europe to date. Five [sequence type (ST) 512] and one (ST11) isolates were recovered from patients who developed BSI from February to August 2022 or February 2023 at two different hospitals in Rome, Italy.
View Article and Find Full Text PDFInositol 1,4,5-trisphosphate receptors (IP3Rs) are enriched at postsynaptic membrane compartments of the neuromuscular junction (NMJ), surrounding the subsynaptic nuclei and close to nicotinic acetylcholine receptors (nAChRs) of the motor endplate. At the endplate level, it has been proposed that nerve-dependent electrical activity might trigger IP3-associated, local Ca2+ signals not only involved in excitation-transcription (ET) coupling but also crucial to the development and stabilization of the NMJ itself. The present study was undertaken to examine whether denervation affects the subsynaptic IP3R distribution in skeletal muscles and which are the underlying mechanisms.
View Article and Find Full Text PDFIt has long been known that regular physical exercise induces short and long term benefits reducing the risk of cardiovascular disease, diabetes, osteoporosis, cancer and improves sleep quality, cognitive level, mobility, autonomy in enderly. More recent is the evidence on the endocrine role of the contracting skeletal muscle. Exercise triggers the release of miokines, which act in autocrine, paracrine and endocrine ways controlling the activity of muscles but also of other tissues and organs such as adipose tissue, liver, pancreas, bones, and brain.
View Article and Find Full Text PDFPiezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states.
View Article and Find Full Text PDFHomer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2 mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that muscle (SOL), at variance with muscle (EDL) and muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts.
View Article and Find Full Text PDF