Histidine phosphorylation (pHis) is a non-canonical post-translational modification (PTM) that is historically understudied due to a lack of robust reagents that are required for its investigation, such as high affinity pHis-specific antibodies. Engineering pHis-specific antibodies is very challenging due to the labile nature of the phosphoramidate (P-N) bond and the stringent requirements for selective recognition of the two isoforms, 1-phosphohistidine (1-pHis) and 3-phosphohistidine (3-pHis). Here, we present a strategy for engineering of antibodies for detection of native 3-pHis targets.
View Article and Find Full Text PDFThe Src Homology 2 (SH2) domain is an emerging biotechnology with applications in basic science, drug discovery, and even diagnostics. The SH2 domains rapid uptake into different areas of research is a direct result of the wealth of information generated on its biochemical, biological, and biophysical role in mammalian cell biology. Functionally, the SH2 domain binds and recognizes specific phosphotyrosine (pTyr) residues in the cell to mediate protein-protein interactions (PPIs) that govern signal transduction networks.
View Article and Find Full Text PDFTyrosine phosphorylation is a critical regulator of cell signaling. A large fraction of the tyrosine phosphoproteome, however, remains uncharacterized, largely due to a lack of robust and scalable methods. The Src homology 2 (SH2) domain, a structurally conserved protein domain present in many intracellular signal-transducing proteins, naturally binds phosphorylated tyrosine (pTyr) residues, providing an ideal scaffold for the development of sensitive pTyr probes.
View Article and Find Full Text PDF