Publications by authors named "G Martiny-Baron"

Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα.

View Article and Find Full Text PDF

This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally.

View Article and Find Full Text PDF

Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.

View Article and Find Full Text PDF

New cancer therapies are likely to arise from an in-depth understanding of the signaling networks influencing tumor initiation, progression and metastasis. We show a fundamental role for Src-homology 2 domain-containing phosphatase 2 (SHP2) in these processes in human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancers. Knockdown of SHP2 eradicated breast tumor-initiating cells in xenograft models, and SHP2 depletion also prevented invasion in three-dimensional cultures and in a transductal invasion assay in vivo.

View Article and Find Full Text PDF

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120.

View Article and Find Full Text PDF