Publications by authors named "G Marrali"

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurological disorder characterised by a selective degeneration of motor neurons (MNs). Stem cell transplantation is considered as a promising strategy in neurological disorders therapy and the possibility of inducing bone marrow cells (BMCs) to circulate in the peripheral blood is suggested to investigate stem cells migration in degenerated ALS nerve tissues where potentially repair MN damage. Granulocyte-colony stimulating factor (G-CSF) is a growth factor which stimulates haematopoietic progenitor cells, mobilises BMCs into injured brain and it is itself a neurotrophic factor for MN.

View Article and Find Full Text PDF

Background And Purpose: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immunomediated condition affecting the peripheral nervous system where probably macrophages are the primary effector cells for demyelination. Reactive oxygen species (ROS), catalyzed by the NOX family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzymes, can induce peroxidation and are potentially injurious to myelin. Our aim was to assess the activity of NOX2, an isoform of NOX, in a series of CIDP patients and to analyze the effect of intravenous immunoglobulin (IVIg) on NOX2.

View Article and Find Full Text PDF

NADPH-oxidases (NOX) catalyze the formation of reactive oxygen species (ROS), which play a role in the development of neurological diseases, particularly those generated by the phagocytic isoform NOX2. Increased ROS has been observed in the amyotrophic lateral sclerosis (ALS) SOD1 transgenic mouse, and in this preclinical model the inactivation of NOX2 decreases ROS production and extends survival. Our aim was to evaluate NOX2 activity measuring neutrophil oxidative burst in a cohort of 83 ALS patients, and age- and gender-matched healthy controls.

View Article and Find Full Text PDF