Publications by authors named "G Marracci"

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics).

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. We report here that is a thyroid hormone regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone.

View Article and Find Full Text PDF

We have previously demonstrated that thyromimetics stimulate oligodendrocyte precursor cell differentiation and promote remyelination in murine demyelination models. We investigated whether a thyroid receptor-beta selective thyromimetic, sobetirome (Sob), and its CNS-targeted prodrug, Sob-AM2, could prevent myelin and axonal degeneration in experimental autoimmune encephalomyelitis (EAE). Compared to controls, EAE mice receiving triiodothyronine (T3, 0.

View Article and Find Full Text PDF

Background: Fast, effective, and rapid processing of central nervous system (CNS) tissue with good preservation of myelin, especially in tissue from diseased mice, is important to many laboratories studying neurosciences.

New Method: In this paper, we describe a new method to process and embed CNS tissue from mice. Spinal cords and optic nerves from naive C57BL/6 mice were used to standardize the microwave protocol following perfusion with fixative.

View Article and Find Full Text PDF

Background: Lipoic acid, an antioxidant, has beneficial effects in experimental acute optic neuritis and autoimmune encephalomyelitis. Optical coherence tomography can detect retinal nerve fiber layer thinning, representing axonal degeneration, approximately 3-6 months after acute optic neuritis.

Objective: To determine whether lipoic acid is neuroprotective in acute optic neuritis.

View Article and Find Full Text PDF