Publications by authors named "G Mallaret"

Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies.

View Article and Find Full Text PDF

Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis.

View Article and Find Full Text PDF

Background: Chronic abdominal pain is the most common cause for gastroenterology consultation and is frequently associated with functional gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. These disorders present similar brain/gut/microbiota trialogue alterations, associated with abnormal intestinal permeability, intestinal dysbiosis and colonic hypersensitivity (CHS). Intestinal dysbiosis can alter colon homeostasis leading to abnormal activation of the innate immunity that promotes CHS, perhaps involving the toll-like receptors (TLRs), which play a central role in innate immunity.

View Article and Find Full Text PDF

While toll-like receptors (TLRs), which mediate innate immunity, are known to play an important role in host defense, recent work suggest their involvement in some integrated behaviors, including anxiety, depressive and cognitive functions. Here, we investigated the potential involvement of the flagellin receptor, TLR5, in anxiety, depression and cognitive behaviors using male TLR5 knock-out (KO) mice. We aobserved a specific low level of basal anxiety in TLR5 KO mice with an alteration of the hypothalamo-pituitary axis (HPA) response to acute restraint stress, illustrated by a decrease of both plasma corticosterone level and c-fos expression in the hypothalamic paraventricular nucleus where TLR5 was expressed, compared to WT littermates.

View Article and Find Full Text PDF