Publications by authors named "G MONASTERIO"

Article Synopsis
  • Uncontrolled regeneration in the intestinal epithelium can lead to cancer, highlighting the need for precise regulation during tissue renewal.
  • Researchers discovered that activating the liver X receptor (LXR) pathway helps balance intestinal regeneration and tumor growth after damage.
  • LXR activation enhances regeneration by producing amphiregulin and is crucial for controlling tumor growth, with diminished LXR-related activity found in human colorectal cancer samples.
View Article and Find Full Text PDF

Tissues are dynamic and complex biological systems composed of specialized cell types that interact with each other for proper biological function. To comprehensively characterize and understand the cell circuitry underlying biological processes within tissues, it is crucial to preserve their spatial information. Here we report a simple mounting technique to maximize the area of the tissue to be analyzed, encompassing the whole length of the murine gastrointestinal (GI) tract, from mouth to rectum.

View Article and Find Full Text PDF

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity.

View Article and Find Full Text PDF

Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood.

View Article and Find Full Text PDF

The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing.

View Article and Find Full Text PDF