Cyanuric acid (CYA) is used commercially for maintaining active chlorine to inactivate microbial and viral pathogens in swimming pools and hot tubs. Repeated CYA addition can cause a lack of available chlorine and adequate disinfection. Acceptable CYA levels can potentially be restored via cyanuric acid hydrolases (CAH), enzymes that hydrolyze CYA to biuret under mild conditions.
View Article and Find Full Text PDFThere is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (CH), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C and C biofuels. The strictly anaerobic, acetogenic bacterium , used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway.
View Article and Find Full Text PDFApproximately one-third of volatile organic compounds (VOCs) emitted to the atmosphere consists of isoprene, originating from the terrestrial and marine biosphere, with a profound effect on atmospheric chemistry. However, isoprene provides an abundant and largely unexplored source of carbon and energy for microbes. The potential for isoprene degradation in marine and estuarine samples from the Colne Estuary, UK, was investigated using DNA-Stable Isotope Probing (DNA-SIP).
View Article and Find Full Text PDFEnviron Microbiol
September 2016
Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs.
View Article and Find Full Text PDFUnlabelled: Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.
View Article and Find Full Text PDF