Human arylamine N-acetyltransferase 1 (NAT1) has been overexpressed in E. coli as a mutant dihydrofolic acid reductase (DHFR) fusion protein with a thrombin sensitive linker. An initial DEAE anion-exchange chromatography resulted in partial purification of the fusion protein.
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122).
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs) catalyze a variety of biotransformation reactions, including N-acetylation of arylamines and O-acetylation of arylhydroxylamines. Chemical modification of hamster recombinant NAT2 with 2-(bromoacetylamino)fluorene (Br-AAF) and bromoacetanilide revealed that Br-AAF is an affinity label for the enzyme whereas bromoacetanilide inactivates NAT2 through a bimolecular alkylation process. Electrospray ionization quadrupole time-of-flight mass spectrometry analysis of Br-AAF-treated NAT2 showed that a single molecule of 2-acetylaminofluorene had been adducted.
View Article and Find Full Text PDFKinetic analysis of the inactiviation of hamster NAT1 by 2-(bromoacetylamino)fluorene (Br-AAF) and bromoacetanilide revealed that Br-AAF is an active site directed affinity label whereas bromoacetanilide acts as a bimolecular alkylating agent. ESI MS analysis of NAT1 treated with Br-AAF showed that a single molecule of 2-acetylaminofluorene had been incorporated. Proteolysis with pepsin followed by sequencing of adducted peptides by ESI MS/MS identified the modified residue as the catalytically essential Cys-68.
View Article and Find Full Text PDF